Projective Hulls and the Projective Gelfand Transform

نویسنده

  • F. REESE HARVEY
چکیده

We introduce the notion of a projective hull for subsets of complex projective varieties parallel to the idea of a polynomial hull in affine varieties. With this concept, a generalization of J. Wermer’s classical theorem on the hull of a curve in Cn is established in the projective setting. The projective hull is shown to have interesting properties and is related to various extremal functions and capacities in pluripotential theory. A main analytic result asserts that for any point x in the projective hull b K of a compact set K ⊂ Pn there exists a positive current T of bidimension (1,1) with support in the closure of b K and a probability measure μ on K with ddcT = μ− δx. This result generalizes to any Kähler manifold and has strong consequences for the structure of b K. We also introduce the notion of a projective spectrum for Banach graded algebras parallel to the Gelfand spectrum of a Banach algebra. This projective spectrum has universal properties exactly like those in the Gelfand case. Moreover, the projective hull is shown to play a role (for graded algebras) completely analogous to that played by the polynomial hull in the study of finitely generated Banach algebras. This paper gives foundations for generalizing many of the results on boundaries of varieties in Cn to general algebraic manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$mathcal{X}$-injective and $mathcal{X}$-projective complexes

Let $mathcal{X}$ be a class of $R$-modules‎. ‎In this paper‎, ‎we investigate ;$mathcal{X}$-injective (projective) and DG-$mathcal{X}$-injective (projective) complexes which are generalizations of injective (projective) and DG-injecti‎‎ve (projective) complexes‎. ‎We prove that some known results can be extended to the class of ;$mathcal{X}$-injective (projective) and DG-$mathcal{X}$-injective ...

متن کامل

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

On two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective

Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...

متن کامل

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

Essential Weak Factorization Systems

We discuss a new type of weak factorization system. Although these systems provide (up to isomorphism) uniquely determined decompositions of morphisms, in general they do not constitute orthogonal factorizations and are not even functorial. Nevertheless, they arise naturally, as injective hulls or projective covers in comma categories. Surprisingly, often injective hulls and projective covers c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004